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a b s t r a c t

In this paper, a common model of task scheduling problems in agent rescue scenario is proposed, in
which tasks with continuous dynamic damage are introduced to capture the emerging applications
of using rescue robots and other resources to enhance human disaster rescue capability. Beyond this,
we mainly focus on finding the optimal task scheduling strategy. We design a heuristic algorithm
based on greedy strategy to obtain the optimal dynamic scheduling strategy of agents. Compared
with solving global integer programming directly, the computational time is greatly reduced. The
proof of the greedy strategy’s validity is also demonstrated under some specific damage functions.
By comparing with the two strategies commonly used in real life, it is proved that our strategy is
optimal. For practical application, we design an automatic negotiation framework, which realizes the
real-time decentralized automated negotiation of agents. Then, using Game Description Language (GDL)
as a tool, an automated negotiation algorithm is implemented, which enables agents to adjust the plan
dispersedly. Experiments show that the algorithm is more efficient than the centralized algorithm in
the case of limited communication.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In large distributed artificial intelligence systems, task schedul-
ing problem is always of great importance. Multi-agent system
is also widely used in this aspect, such as the distribution of
rescue tasks, emergency Scheduling and so on. The so-called
task scheduling problem can be simply summarized as assigning
different agents to corresponding tasks with a coherent strategy
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to optimize a specific goal for a given set of tasks and agents.
Because of the difference of geographical distribution and agent
capability, different scheduling schemes consume different re-
sources at the completion of tasks, and decision makers can make
optimal scheduling schemes with the purpose of minimizing
resource consumption.

In this paper, we consider a kind of practical tasks, taking fire
as the main tasks. If we do not put it out, it will continue to
damage the surrounding environment. An intuitive conclusion is
that the greater the fire, the greater the damage rate to the sur-
rounding environment, we call it the sustainability of damage. In
addition, in different stages of fire, the speed of fire damage is also
different. One obvious conclusion is that the larger the fire, the
faster the damage to the surrounding environment. Obviously,
for a single task, the sooner the task is completed, the less total
damage it will cause to the surrounding environment. Our goal is
to find a scheduling scheme that minimizes the total damage to
the system caused by all tasks.
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Although centralized methods can find the optimal dynamic
scheduling, it needs a central decision agent with strong com-
puting power. And the agent should always have complete in-
formation about each parameter of the system. Both of these
requirements are difficult to meet, especially the second one.
Besides, rescue scenarios inevitably have the characteristics of
information dispersion, noisy communication and so on, which
has limited the applicability of traditional centralized methods,
resulting in the lack of flexibility and robustness of many ap-
proaches. The dynamic of damage indicates that it is difficult to
produce optimal results in a single scheduling, which requires the
realization of real-time dynamic scheduling of agents.

1.1. Our contribution

In this paper, a common model of task scheduling problems in
agent rescue scenario is proposed, in which tasks with continuous
dynamic damage are introduced to capture the emerging appli-
cations of using rescue robots and other resources to enhance
human disaster rescue capability. At the technical level, we first
design a heuristic algorithm based on greedy strategy, and obtain
the optimal dynamic scheduling strategy of agents with the idea
of centralized programming. We can prove the validity of the
greedy strategy under some specific damage functions, and use
the solution obtained by the greedy strategy as the benchmark
for subsequent experiments.

Then, we design a real-time decentralized algorithm with good
robustness for practical application. Game theory is an effective
resource scheduling tool, but it usually assumes that agents can-
not communicate with each other, which in many cases will
have a negative impact on the system. For this reason, we de-
sign an automatic negotiation framework in multi-agent domain,
which realizes the real-time decentralized automatic negotiation
of agents. Then, using Game Description Language (GDL) as a
tool, an automatic negotiation algorithm is implemented, which
proves that the algorithm can achieve the same optimization
effect as centralized deployment. Finally, the joint completion
of agents with different functions, namely fire brigade, ambu-
lance and police, is discussed, and our task scheduling strategy
is extended.

1.2. Related work

Task scheduling is the key problem in multi-agent system
researches. For a given set of tasks and agents, a proper strat-
egy should be applied to assign various agents to corresponding
tasks, optimizing some certain targets. The problem of finding an
optimal task scheduling is proved to be NP-completed [1,2]. There
are a lot of research work in this field. Some researchers assume
that each agent can only work on one task and a task can only be
operated by one agent at a time [3–5]. It costs agents something
(time, money and so on) to complete tasks. James [6,7] introduces
a kind of tasks with cost growing over time and computes the
optimal rescheduling solution to complete all tasks with least
cost. Many works [8,9] focus on minimizing the total cost. To
our best knowledge, we are the first to introduce such tasks with
continuous and dynamic damage to system.

The task scheduling method can be divided into centralized
methods and decentralized methods. In a centralized system, an
agent has a higher status and is assumed to have full information
of the system. This central agent computes the optimal or near-
optimal decisions, maximizing the effectiveness of multi-agent
systems. The centralized decision process is always modeled as
integer programming [10]. Although these methods may find the
optimal solution, requirements for full information are hardly
satisfied [11], raising need for decentralized or decentralized

scheduling method. In the distributed system, each agent need
to make its own decision, which makes the system more flexible
and robust. Agents can cooperate with each other to maximize
the efficiency of the system. Negotiation is an effective way for
distributed agents to cooperate with each other [12–15]. How-
ever, an agent can always only participate in one negotiation. If an
agent wants to participate another one, he need to go off-line and
re-program to adjust new negotiation protocol [16,17]. In other
words, agents are not domain or protocol-independent. However,
a agent often needs to complete different works with different
teammates in various negotiation scenarios.

General Game Playing is a relatively new topic. Although
earlier work has been done, it really started to draw widespread
attention in the AI community after the introduction of GDL [18]
and the organization of the annual AAAI GGP competition since
2005. Zhang [19] propose to use GGP to model automated negoti-
ations, which shows the possibility to design protocol-
independent agents for better task scheduling. Standing upon
the shoulders of former researchers, we propose our model and
method in the following sections.

2. Definitions of common model

In this section, firstly we define some notations and describe
the task environment with continuous and dynamic damage.
The optimized objective is pointed out. Then, we take a simple
example to illustrate our model.

2.1. Task scheduling problem

The task scheduling problem can be concluded that for a given
set of tasks and agents, a proper strategy should be applied to
assign various agents to corresponding tasks, optimizing some
certain targets. In this model, R = {1, 2, . . . ,N} is the set of
agents. It means that there are N agents available to be allocated.
T = {1, 2, . . . ,M} is the set of tasks.

We make some assumptions about the task and agent sets:

• The number of agents N is constant.
• There will be no more new tasks added to the system.

For a agent i ∈ R in the task, ci represents the agent i
can complete in a unit time. For a task j ∈ T , we define that
wt

j ≥ 0 is the remaining workload of task j at time t . Time in
this model is discrete to be each single time point. A interval
like [t, t + 1) is used to describe a period of time. C t

j is the
number of agents assigned to task j at time t . A agent can only
be allocated to one task at a time point however a task can be
operated by many agents at a time. The scheduling strategy at
time t can be represented by a vector C t

= (C t
1, C

t
2, . . . , C

t
M ). To

achieve better working efficiency, scheduling plans at different
time points may be highly different. It means that agents can be
reallocated frequently in the whole working process.

In the real world, different agents and tasks have different
geographical distribution. It takes some time for a agent to come
from one place to another. This time may be determined by the
distance between the departure and destination, road conditions
and the speed of agents themselves. We use the notation TT (a, b)
to represent the time required to transfer from task a to task b.
TT (a, b) is also called transfer time.

2.2. Continuous damage of tasks

The remaining workload of a task only relies on the initial
setting and scheduling results at each time point. The changing of
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workload can be represented by the following recursion formula:

wt+1
j = wt

j −

C t
j∑

i=1

ci (1)

According to this formula, the agent scheduling strategy at
time t will not change the remaining workload instantly. In the
real world situation, agents need time to operate on tasks. In our
model, agents work on tasks at time period [t, t + 1), updating
remaining workload of tasks at time point t + 1. We use a vector
W t

= (wt
1, w

t
2, . . . , w

t
M ) to represent remaining workload of all

tasks at time point t .
One of the main innovations of this model is that tasks with

continuous and dynamic damage are firstly introduced. We define
a function H : w → R to quantity such damage. At some time
point t , H(wt

j ) represents the damage task j causes to the system
during time period [t, t + 1) as wt

j is the remaining workload of
j at time t .

Agents cannot complete tasks when transferring from one
to another. Transferring on road can be viewed as a waste of
resources. In any period of time, the total amount of tasks com-
pleted by agents can be determined. When the amount of re-
maining workload is greater than the total working capacity of
all agents, each agent must be assigned to a task, which means
during this period, total workload completed is

∑N
i=1 ci. When

the amount of remaining workload is no more than the total
working capacity of all agents, total workload completed is equal
to remaining workload. Actually, this situation only happens at
the final scheduling. If the initial workload is known, the time
when all tasks are finished can be easily calculated:

td =

∑M
j=1 w0

j∑N
i=1 ci

(2)

As stated above, C t
j is the number of agents assigned to task j

at time t . A vector C t
= (C t

1, C
t
2, . . . , C

t
M ) is used to describe the

scheduling of all tasks at time t . It is expected that the amount of
all C t is a combination number. It can be thought of as putting M
boards among N orderly arraigned items. The scheduling space is
extremely large even at one time point. It is a quite challenging
thing to compute the global optimal solution.

The target of our model is that when the completing time td is
determined, choosing the proper rescheduling plan at each time
point to minimize the total damage suffered by the system. The
total damage can be represented as below.

min
td∑
t=0

M∑
j=1

H(wt
j ) (3)

2.3. An illustrative example

In this section, we give a simple example to instantiate the
above symbols and models. There are two tasks T = {1, 2} and
four agents R = {1, 2, 3, 4} in the system. When t = 0, the
initial workload of two tasks are w0

1 = 6 and w0
2 = 3, that is,

W 0
= (6, 3). The damage function of task 1 is H1(w) = w2 and

that of task 2 is H2(w) = w3. For each agent, ci = 1. Obviously,
the finishing time td can be easily calculated that td =

6+3
4 = 3.

After the third scheduling, all tasks will be completed. We list
three possible scheduling plans.

• C0
= (1, 3), C1

= (4, 0), C2
= (1, 0)

• C0
= (2, 2), C1

= (3, 1), C2
= (1, 0)

• C0
= (3, 1), C1

= (2, 2), C2
= (1, 0)

Actually, for this simple example, all the scheduling plans can
be enumerated. According to our calculation, there are 7 possible
scheduling plans in total. Next, we demonstrate the total damage
of the system under the above three different plans.

We assume that scheduling at time t influences the remaining
workload at time t + 1. The damage in time period [t, t + 1) is
determined by wt

j . For the three plans, workload at time t = 0 is
same that W 0

= (6, 3). So the damage during [t, t + 1) is same
either that H1(6)+H2(3) = 62

+33
= 36+27 = 63. However, due

to the different scheduling at the last time point, at time t = 1,
the remaining workloads of these plans are different, just showed
below.

• W 1
= ((6 − 1), (3 − 3)) = (5, 0)

• W 1
= ((6 − 2), (3 − 2)) = (4, 1)

• W 1
= ((6 − 3), (3 − 1)) = (3, 2)

Then the damage during [1, 2) is:

• 52
+ 03

= 25 + 0 = 25
• 42

+ 13
= 16 + 3 = 17

• 32
+ 23

= 9 + 8 = 17

According to C1 and W 1, W 2 is:

• W 2
= ((5 − 4), (0 − 0)) = (1, 0)

• W 2
= ((4 − 3), (1 − 1)) = (1, 0)

• W 2
= ((3 − 2), (1 − 1)) = (1, 0)

Obviously, W 2 is same for the three plans. Correspondingly,
damage in [2, 3) is same either that 12

+ 03
= 1. Then the total

damage is that:

• 63 + 25 + 1 = 89
• 63 + 19 + 1 = 81
• 63 + 17 + 1 = 81

It is clear that plan 2 and plan 3 is better, because they lead
to smaller total damage to the system. We use a simple example
to illustrate that different agent resource scheduling plans will
have different impaction on the results. However, based on the
above calculation alone, we cannot strongly prove that the plan
2 or 3 is optimal. Even in this simple case, there are 7 plans. We
can enumerate all the scheduling strategies to find the optimal
dynamic rescheduling strategy. Through thoroughly analysis, we
can tell readers that the best solution is: C0

= (3, 1), C1
= (2, 2),

C2
= (1, 0).
Our target is to find an optimal strategy to minimize the total

damage to the system. However, as shown above, the strategy
space increase exponentially with the number of agents and
amount of workloads. For this problem with practical meanings,
it is worth considering to design efficient algorithms. In the next
section, we demonstrate the characteristics of optimal solution
and design a greedy strategy to compute it with a centralized
idea.

3. Centralized scheduling strategy

In this section, we propose a centralized method to compute
the optimal solution. We assign a agent as the central agent or
we add a virtual agent to the system. It is assumed that this
agent knows the full information of the task environment, like
remaining workloads of each task, current scheduling situation or
the damage function of each task. According to these information,
this central agent deploys a heuristic algorithm based on greedy
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strategy to compute the local optimal solution at each time point
to find the global optimal solution. We prove the correctness
of this strategy and compare the performance with a directly
computing method.

3.1. Global and local optimal solution

3.1.1. Global optimal solution
We define that the optimal solution will minimize the total

damage suffered by the system during the whole progress. This
can be represented as an integer programming, the formula is
that:

min
td∑
t=0

M∑
j=1

H(wt
j )

s.t.
M∑
j=1

C t
j ≤ N

M∑
j=1

C t
j∑

i=1

ci ≤

M∑
j=1

wt
j

wt+1
j = wt

j −

C t
j∑

i=1

ci

ciis a no-negative constant, ∀i,
C t
j is a no-negative integer, ∀j, ∀t

(4)

The Eqs. (4) and (5) ensure that when the amount of remaining
workload is greater than the total working capacity of all agents,
each agent must be assigned to a task, which means during this
period, total workload completed is

∑N
i=1 ci. When the amount of

remaining workload is no more than the total working capacity
of all agents, total workload completed is equal to remaining
workload. The Eq. (6) ensure the change of workload according
to scheduling strategies, which should be expanded in real coding
that:

wt+1
j = w0

j −

C0
j∑

i=1

ci −

C1
j∑

i=1

ci − · · · −

C t
j∑

i=1

ci (5)

It is easy to calculate that the total variables in this integer
programming is td ·M , which indicate the huge challenge we face
when solving this programming.

3.1.2. Local optimal solution
The scheduling strategy C t

= (C t
1, C

t
2, . . . , C

t
M ) at time t will

influence the remaining workload at time t+1. And the workload
W t+1 also determine the total damage in [t, t + 1). We say an
scheduling strategy C t

∗
is local optimal at time t if and only if this

strategy lead to the minimal damage during [t, t + 1) among all
the strategies. This characteristic is shown in Definition 1.

C t
∗
is local optimal, iff D(C t

∗
) ≤ D(C t ), ∀C t

∈ C
According to Definition 1, the local optimal solution can be

determined by computing the following integer programming.

min
M∑
j=1

H(wt
j )

s.t.
M∑
j=1

C t
j ≤ N

M∑
j=1

C t
j∑

i=1

ci ≤

M∑
j=1

wt
j

C t
j is a no-negative integer, ∀j, ∀t

(6)

The amount of variables of this integer programming is M . But
as we will show in the next section, it needs to be computed for
td times to find the optimal solution.

3.2. A centralized strategy

At some time point t , H(wt
j ) represents the damage task j

cause to the system during time period [t, t + 1) as wi
j is the

remaining workload of j at time t . We think that there is a
positive correlation between H(wt

j ) and the remaining workload
wt

j . Namely, the damage of larger tasks must grow faster than
smaller tasks.

The optimal scheduling for every time unit t , that is, the
minimization of the damage H(wt

j ), can eventually lead to the
global optimal solution, when ∂

∂tH(wt
j ) ≥ 0.

The scheduling scheme obtained by the greedy strategy is
C[0, td] = {C0, C1, . . . , C td}. Assume there exists a better solution
C∗[0, td] = {C0

∗
, C1

∗
, . . . , C td

∗ }, which differs from the greedy
solution. This means that at some time t0 the better solution
must assign agents differently than the greedy solution. The
scheduling scheme of our greedy algorithm at time t0 is C t0 =

(C t0
1 , C t0

2 , . . . , C t0
M ), the better scheduling is C t

∗
=

(C t0
1∗, C

t0
2∗, . . . , C

t0
M∗

). By definition of the greedy algorithm, we
know

∑M
j=1 H(wt0

j ) ≤
∑M

j=1 H∗(w
t0
j ). Thus we prove by induction

that
∑td

t=0
∑M

j=1 H(wt0
j ) ≤

∑td
t=0

∑M
j=1 H(wt

j ).
If

∑M
j=1 H(wt0

j ) <
∑M

j=1 H∗(w
t0
j ), then there must exist∑td

t=0
∑M

j=1 H(wt
j ) <

∑td
t=0

∑M
j=1 H∗(wt

j ). If
∑M

j=1 H(wt0
j ) =∑M

j=1 H∗(w
t0
j ), there also exists

∑td
t=0

∑M
j=1 H(wt

j ) <
∑td

t=0∑M
j=1 H∗(wt

j ).
So, according to the greedy strategy, we can conclude∑M
j=1 H(wt0+1

j ) ≤
∑M

j=1 H∗(w
t0+1
j ) at the next unit time t0 + 1.

The remaining workload of the two scheduling schemes at
time t0 are respectively w

t0
j and w

t0
j∗ . Due to a positive correlation

between H(wt
j ) and wt

j , we know that w
t0
j ≤ w

t0
j∗ . We denote w

t0
j∗

by w
t0
j∗ = w

t0
j +aj, ∀j ∈ T , aj ≥ 0. Thus H(wt0+1

j ) = H(wt
j −

∑C t
j

i=1 ci)

and H(wt0+1
j∗ ) = H(wt

j −
∑C t

j
i=1 ci + aj).

βi is the slope between w
t0+1
j and w

t0+1
j∗ , so we hold that:

H(wt0+1
j∗ ) − H(wt0+1

j ) = βi × aj
∂
∂tH(wt

j ) ≥ 0, so βi > 0, we can conclude βi × aj > 0. We can
get
M∑
j=1

H(wt0+1
j ) ≤

M∑
j=1

H∗(w
t0+1
j )

This means
∑td

t=0
∑M

j=1 H(wt
j ) ≤

∑td
t=0

∑M
j=1 H∗(wt

j ). This is a
contradiction to the fact that C∗[0, td] is a better solution, there-
fore the optimal scheduling for every time unit t can eventually
lead to the global optimal solution.

3.3. Effectiveness against with other method

We compare the optimal solution result with other methods to
demonstrate the effectiveness of our approach. There is no former
work on scheduling strategies of such tasks we described. We
introduce two common strategies often used in real world:

• Average strategy: allocating agents to each task averagely.
If there are 10 agents and 5 tasks, then each task is assigned
to 2 agents. If N

M is not an integer, the remainder agents are
allocated with roulette.
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Table 1
Task parameter settings.

Task 1 Task 2 Task 3 Task 4 Task 5

Damage function w2 1
3w3 1

4w4 w2 12w

Initial workload 9 10 8 11 12

Fig. 1. Shows the total damage comparison among three methods.

Fig. 2. Shows the time comparison among two methods.

• Proportion strategy: allocating agents to each task accord-
ing to the proportions of workload. The central agent cal-
culates proportions of workload of each task then allocate
agents according to it with roulette.

We compare the two methods with our optimal solution in a
task environment. We assume that there are 8 agents available.
The environment setting is illustrated in Table 1:

The Fig. 1 shows the total damage comparison among three
methods. The first rank is the total damage of our optimal so-
lution, which is showed to be the least. The highest one is the
average method and the third one is the proportion method.

Beyond this, we compare the execution time of the algorithm.
Using the task settings in Table 1, we use linear programming to
calculate the global optimal solution directly. In Fig. 2, the blue
curve represents the running time of the greedy strategy. The
orange one is to calculate the global optimal solution directly.
The result of direct calculation is at each beginning, so the av-
erage time of each time point is calculated to compare the two
strategies more intuitively.

4. A real-time decentralized scheduling algorithm

In the centralized method, the solution only depends on the
central agent who computes everything. However, other agents
only obey the orders mechanically, which does not reflect the
intelligence of agents or the multi-agent system. Moreover, at the
end of the previous section, we explained the drawbacks of such
centralized approaches and the enormous difficulty we need to
face when using then in real world. Therefore, we hope to design
a decentralized task scheduling method, allowing agents to adjust
scheduling plans in a decentralized way.

4.1. A general automated negotiation framework

We model the automated negotiation in agent task scheduling
scenarios with GDL. A kind of automated negotiation framework
is proposed. The main idea of General Game Playing is to design
domain-independent game players, who can participate in any
games described with GDL. We also hope to design such general
framework about negotiations, which allow us to design domain
and protocol-independent agent to join various negotiation sce-
narios without going off and re-programming. Based on GGP,
using GDL to describe the agent task scheduling negotiations
allows us to take good use of lots of current GGP techniques,
which can accelerate development in this area. According to some
GDL and automated negotiation researches, we initially define
a framework at agent task scheduling automated negotiation as
follows:

• Ag = {a1, a2, . . . , an} is the set of agents who participate in
a negotiation. The negotiation host is not included in Ag .

• Ac = (Ac1, Ac2, . . . , Acn) is a tuple in which Aci represents
the action set of negotiation agent i ∈ Ag .

• W is a non-empty set of states. w0 ∈ W is the initial state
of a negotiation. T ⊂ W is the set of terminal states w ∈ W .

• L = (L1, L2, . . . , Ln) is a tuple where each Li : W\T → 2Ai

is the legal function for ai. It determines the actions ai can
take at some state.

• A so-called state update function is defined as u : W×Aci →

W to represent at what condition, a state will change to
another.

• Agr is the set of all possible negotiation agreements. The
function Q : T → Agr maps each terminal state to an
agreement.

Such definition of negotiation is unified GGP , which allows us
to use GDL to describe automated negotiation scenarios in agent
task scheduling. In the next section, against the tasks raised in
this paper, we design a negotiation protocol and strategy, then
represent them with GDL.

Now we propose a decentralized task scheduling algorithm.
We view each task as agents and call them ‘‘task agent’’. We
assign one of them as the central agent. Although there is still
a so-called central agent existing in this method, it just aims
to maintain the negotiation and do little computation. It can be
replaced by other external agents. This decentralized method can
be described as follow:

Step 1. For all j ∈ Ag , agent j proposes two values: uj(1) and
uj(−1). The central agent combines all those values as two
sequences U(1) and U(−1). If minU(−1) > maxU(1), the
algorithm terminates.
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Step 2. Assuming that ui(−1) is the minimal in U(−1), the corre-
sponding agent i picks agent j ̸= i whose uj(1) is maximal
in U(1). If the condition ui(−1) < uj(1) is satisfied, agent
i will transfer a agent of itself to agent j then both agent
i and j is deleted from U(1) and U(−1). If the condition is
not satisfied, algorithm returns to Step 1.

This procedure can be represented in pseudo-code as below:

Algorithm 1: A real-time decentralized scheduling algorithm
1 repeat
2 U(1) = U(−1) = ∅;
3 for each i ∈ Ag do
4 propose(ui(−1), ui(1));
5 U(1) = U(1) ∪ ui(1);
6 U(−1) = U(−1) ∪ ui(−1);
7 repeat
8 i = argminU(−1);
9 delete i from U(1) and U(−1);

10 j = argmaxU(1);
11 if ui(−1) < uj(1) then
12 agent i gives a task to agent j;
13 delete j from U(1) and U(−1);
14 else
15 Algorithm Stops

16 until true

17 until true

We assume that at some time t the amount of agents at task j
is C t

j . Then the damage caused in [t+1, t+2) is Hj(wt
j −C t

j ). If we
add one more agent to task j at time t , then the damage changes
into Hj(wt

j −C t
j −1). We define uj(1) = Hj(wt

j −C t
j )−Hj(wt

j −C t
j −1).

Similarly, uj(−1) is defined as Hj(wt
j −C t

j +1)−Hj(wt
j −C t

j ). There
are some special cases like C t

j = 0, C t
j = wt

j or C t
j = N . In these

cases, uj(1) or uj(−1) is assigned as −1.

4.2. Effectiveness against with centralized strategy

In this section, we show the application of our centralized
strategy in RoboCup Rescue Simulation(RCRS). RCRS is a simu-
lation of disaster response scenarios in large cities (for more
information, see http://www.robocurescue.org). This is a complex
environment in which the agent team must assign and execute
tasks using incomplete information in real time in an uncer-
tain environment. Therefore, it provides an ideal platform for
evaluating the efficiency of our control strategy. Fig. 5 gives an
example of the maps we used in our RCRS experiments. More
specifically, in order to clearly identify the effect of using our
algorithm, we consider a limited version of RCRS, which does not
contain blocked roads, so the only problem is to coordinate rescue
agents to rescue injured civilians. Therefore, the overall goal is
to coordinate the actions of emergency services so that they can
save as many casualties as possible in the shortest possible time.
We are now discussing the design of our centralized strategy
experiment to evaluate our performance.

Specifically, we run on three standard RCRS maps, Kobe, Berlin
and Foligno, each containing 100 civilians and 20 rescue agents.
Each simulation lasts 300 time steps, and each experiment runs
20 times. The performance of the experiment is evaluated by the
scores obtained at the end of the simulation. (See Fig. 3.)

We did two batches of experiments. Firstly, the communica-
tion range of the agent is not limited. We use these experimental
results to compare the effectiveness of our discentralized algo-
rithm to centralized algorithm. Fig. 4 shows the average score of

Fig. 3. Example of a map used in RoboCup Rescue Simulation.

100% compared with the centralized method in the three exper-
iments. Although the score between decentralized algorithm and
centralized heuristic algorithm is significant in statistics, the solu-
tion of decentralized generation is less than 8% of the centralized
method. Considering comprehensively, these results show that
the decentralized method is a good approximate solution in RCRS
scenarios.

More specifically, both algorithms perform better in Kobe and
Foligno scenarios than in Berlin scenarios, we think it is because
Berlin is a larger and unreasonably structured map than Kobe or
Foligno, it is difficult to complete rescue missions there quickly.
Our algorithm will lead to the aggregation of agents, which means
that agents will deal with the same tasks after negotiation and
transfer to new tasks together after dealing with the current
tasks. This often results in serious resource overscheduling to
tasks with very close deadlines, which has a significant negative
impact on the quality of the generated solutions. Excess schedul-
ing is at the cost of other tasks not being completed. It is likely
that the deadlines for other tasks have passed before they can be
effectively handled, which means a serious waste of resources.
The centralized heuristic algorithm is set to share the same world
view in the current complete information. Therefore, centralized
algorithm can avoid this defect. That is to say, because it is a
centralized algorithm, it can assign the most minimum number of
agents to complete most tasks, thus releasing resources allocated
to other tasks is about to expire. And if the task cannot be
completed before the deadline, it will not try. In the case of
ideal computing state and complete communication, this heuris-
tic algorithm can lead to better completion of all tasks by agents
between tasks.

However, under the circumstance of limited communication
range, serious resource scheduling errors may occur in both al-
gorithms. Specifically, since a single agent shares their world
view with all other agents, the scope of communication limits
the ability to share information with each other. However, the
behavior and performance of the decentralized algorithm remain
relatively stable, and only when the communication distance
is severely limited will there be oscillation. Like a centralized
heuristic approach, this is the result of agents sharing informa-
tion only after they enter the communication range with each
other. However, since our decentralized algorithm only calculates
the new optimal response strategy based on the communication
strategy, it avoids other costly misscheduling, and thus produces
better performance when the communication scope is limited.
(See Figs. 6 and 7.)

4.3. Implementation with GDL

Ag = T , because the negotiation participants are task agents.

http://www.robocurescue.org
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Fig. 4. Comparing the algorithms across three maps under unrestricted
communication.

Fig. 5. Comparing the algorithms across Kobe map under restricted communi-
cation.

Aci = {propose(ui(1), ui(−1)), give(j), noop}. propose(ui(1),
ui(−1)) means to propose ui(1) and ui(−1) to host and other
agents. give(j) means to give a agent to agent j. noop means
no-operation.

w ∈ W . The state w can be represented as a tuple (I, K )
consisting of a sequence I and a integer K. The sequence I con-
sists of 0, −1 and 1, whose length is M , for example I =

(0, 1, −1, 0, . . . , 0). The meaning of 0 at the first position is that
till the current negotiation, task agent 1 do not give a agent
neither accept a agent. Besides numbers on second and third
order, other numbers are all 0. Then 1 and −1 on the second and
third position mean that task agent 3 give a agent to task agent 2.
According to the prove of greedy strategy, we can go towards the
final global optimal solution via find local optimal solution at each
time point step by step. As showed in Algorithm 1, negotiations
at each time can be viewed as a serious of sub-negotiations (Line
x y). The sub-negotiation can be divided into propose state and

Fig. 6. Comparing the algorithms across Foligno map under restricted
communication.

Fig. 7. Comparing the algorithms across Berlin map under restricted
communication.

adjust state. The second parameter K of w = (I, K ) aims to
distinguish the two states. In a sub-negotiation, one agent need
to act twice. The total number of steps in a sub-negotiation is
a constant 2M . We initialize K = 2M . Every time a agent takes
actions, K reduces by 1. When K > M , it is propose state. When
M ≥ K > 0, it is adjust state. When K = 0, the sub-negotiation
terminates.

As stated above, once a agent takes actions, K reduces by 1. In
the propose state, this feature can be represented as
u(I, K ), i.propose(ui(1), ui(−1)) = (I, K − 1). However, in the
adjust state, if an agent i takes action give(j), giving a agent of his
own to task agent j, in the sequence I , I[i] reduces by 1 and I[j]
increases by 1. It can be represented as u(((. . . , 0, . . . , 0, . . .), K ),
i.give(j)) = ((. . . , −1, . . . , 1, . . .), K − 1). In this formula, two 0s
at the left side are on the ith and jth place. i.give(j) means that
task agent i delivers a agent to task agent j.
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We use GDL to implement this negotiation protocol on Gen-
eral Game Playing platform. We did not implement the agents
negotiation strategy by coding, deployed the strategy by human
operation. It comes to the fact that after a serious sub-negotiation
we can achieve a local optimal solution. By doing so repeatedly,
the global optimal solution will be reached.

It is of little meaning to compare the running time of our
negotiation method and the centralized method in Section 4.
Because the negotiation method requires a branch of communica-
tion among agents, which is time-consuming. However, the actual
computational burden of the negotiation method will be shared
by each agent participating in the task, so it is more practical in
the real world.

5. Conclusion and future work

In this paper, we are the first to introduce a novel and practical
kind of task into agent resource scheduling field, which we call
tasks with continuous and dynamic damage. Moreover we design
a centralized multi-period greedy strategy, to compute the global
optimal strategy. The prove of the greedy strategy’s correctness is
also demonstrated. Then we propose an decentralized scheduling
algorithm for agents to adjust schedules themselves.

Due to limited abilities of authors, there are many shortage
in this work. On one hand, the workload of a task will grow
naturally. For example, a fire in a forest will burn down nearby
woods. The burned woods can be considered as damage. But
the fire spreads as well. The scale of fire will increase, which
means the workload grows over time. On the other hand, in
this paper, the transfer time of rescheduling is not considered.
In some situations it can be ignored, however, is can be non-
negligible in other occasions. Both natural growing of workload
and non-zero transfer time can make the centralized method
invalid. In the future work, we will take these two parameters
into consideration to modify the model.

Growth of workload, damage to system and transfer time,
these three aspects are closely related to the scheduling plans.
Moreover, they affect each other making it hard to deploy the
centralized method. In this paper, the damage function is as-
sumed to be a-prior and static. But in the real world, this assump-
tion is hardly satisfied. In forest fires, a strong wind or a heavy
rain can have huge impacts on parameters. Therefore, to deal
with the problem of incomplete information and dynamic ran-
dom change of information, we design a decentralized automated
scheduling method, allowing agents to communicate with each
other and allocate resources in decentralized manners [20–22].

In this paper, it is an initial work of our research. In the real-
world situations, compared with centralized method, automated
negotiations are more practical to deploy. Inspired by Jonge [19],
we think that using GDL to describe negotiation protocol means
we can apply many well-developed GGP technologies to task
scheduling researches, contributing to the possibilities of general
automated negotiations in multi-agent field. As an initial re-
search, there are a lot to improve. In the future work, we need to
investigate in different negotiation scenarios widely to construct
a general framework. Efficient protocol need to be designed to
facilitate process and reduce communication consuming. GDL is
used to describe some simple automated negotiations. For more
strong expression, expanded GDL like SGL [23] to implement
protocols and strategies is a research direction as well.
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